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We know that (x + 1) is a root of x® + 1, since (—1)3 +1=10
By polynomial long division, we find that 23 +1 = (x + 1)(2? — 2 + 1)

Note that (z? — x + 1) is an irreducible quadratic since v> —4ac=1—4%1= -4 <0
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We therefore use the partial fractions decomposition:

By multiplying this equation through by the denominator z2 + 1,
we get 1 = (Az+ B)(z +1) + C(2® —z + 1)

There a a number of ways to use this equation to find A, B, and C. Since this equation
has to be true for all z, it is true at x = —1, yielding: 1 = 0+ C(1 + 1 + 1), which implies
that C' = 3.

Next, we multiply out the large equation: 1 = Az? + Ax + Bx + B+ C2? — Ca +C =
(A+C)a?+ (A+ B —C)x + (B + C). This yields the following equations relating the
coefficients of 2%, x and the constant terms on the right and left of this equation:
0=A+C
0=A+B-C
1=B+C
Since we have compute C' to be %, the coefficients of z? immediately yield that A =
—C = —1, whereas the coefficients of 22 yield that B=C - A=C — (-C)=2C =2

To clarify: A = —%;B =2.0=1
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We now rewrite our integral using this partial fractions decomposition:
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Note: We see that the only way to solve the first integral (linear over quadratic) is with
a u-substitution, but the constant -4 in the numerator will not match up with the desired
substitution. We remove this constant before continuing:
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Let u = 22 — x + 1, then du = (22 — 1)dx, simplifying the first integral. The second

integral is type constant/ quadratic, so we must complete the square for the denominator of
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the second integral to get a form
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Some key points from this example:
_linear 4,56 y-substitution. Force the correct coefficient of x and take out (separate) any

quadratic
unwanted constants.

constant y1q6 5 y-substitution with £ tan=!(%); it may be necessary to complete the square first
quadratic a a’?

constant yise a u-substitution to get a In|u
mear

This should cover all your bases when you get to the end of a partial fractions problem.

I wish you better luck with your algebra than I had!

Happy Integrating,
Marisa



